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Abstract.  We introduce a new way of describing the diversity of an ensemble of classifiers, the 
Percentage Correct Diversity Measure, and compare it against existing methods.  We then introduce 
two new methods for removing classifiers from an ensemble based on diversity calculations.  Empirical 
results for twelve datasets from the UC Irvine repository show that diversity is generally modeled by 
our measure and ensembles can be made smaller without loss in accuracy. 

1   Introduction 

Multiple classifier systems have become the subject of attention because they can provide significant 
boosts in accuracy for many datasets [1-6].  They can be created in a variety of ways.  Classifiers of the 
same type that perform differently may be created by modifying the training set through randomly re-
sampling with replacement, as in bagging [2], or successively choosing training sets based on errors made 
by the previous set of classifiers, as in Ivoting [3].  They can also be created by approaches that exploit 
randomization within the learner; for example, different initial random weights in neural networks or a 
random choice of the test at a node in a decision tree from among the top n choices [5].  The boost in 
performance from using an ensemble is at least partially due to diversity [4,7] – examples that are 
incorrectly classified by some classifiers are correctly classified by others, in such a way that the voted 
accuracy is greater than that of any single classifier.  This paper considers the concept of diversity, 
develops a new approach to describing it, and then uses this to create a better ensemble by removing the 
less useful classifiers. 

2   Diversity 

Diversity is a property of an ensemble of classifiers with respect to a set of data.  Diversity is greater when, 
all other factors being equal, the classifiers that make incorrect decisions for a given example spread their 
decisions more evenly over the possible incorrect decisions.  The more uniformly distributed the errors are, 
the greater the diversity, and vice versa.   

The Kappa statistic from Dietterich [4], which measures the degree of similarity between two classifiers, 
serves as an illustrative starting point for examining diversity.  Referring to Figure 1, the Kappa value can 
be plotted on the x-axis for each pair of classifiers, against the mean error for the pair on the y-axis.  A 
broad scatter of points along the x-axis indicates that the pairs of classifiers have significantly different 
levels of agreement.  Ideally, the best classifiers would be both individually accurate and comparatively 
diverse.  The average of all paired Kappa values can be used as a measure of ensemble diversity.  One of 
the drawbacks of using Kappa diagrams is the computational complexity associated with calculating all of 
the pair-wise combinations which would be required to generate a single number for the overall diversity. 
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Fig. 1.  A Kappa Diagram showing a large spread of Kappa and mean error scores 

Kuncheva and Whitaker [7] compare ten statistics that can measure diversity among binary classifier 
outputs.  They looked at four statistics that are averaged pair-wise results, and six that are non-pair-wise 
results.  Since they found the importance of diversity to be unclear, they recommend the pair-wise Q 
statistic [11] based on the criteria that it is understandable and relatively simple to implement.  As every set 
of paired classifiers produces a Q value, the average, Qav, is used for the diversity value of the ensemble as 
shown in Figure 2.  In this algorithm, classifications are compared as a function of correctness or 
incorrectness with regard to a validation or test set.  This differs from Dietterich’s Kappa algorithm where 
classifications are compared based solely on the class they represent. 

 

  

 Fig. 2.  The averaged Q statistic Fig. 3.  The Inter-rater Agreement function 

Dietterich’s Kappa statistic is a variant of the Inter-rater Agreement function (also referred to as Kappa).  
In this algorithm, the rate of coinciding classifications is generated while taking into account the probability 
that the agreement is based solely upon chance.  Like the Q statistic, it does not take into account the actual 
classification but rather whether the classification was correct or incorrect.  However the Inter-rater 
Agreement function is not pair-wise and hence is polynomially faster than either aforementioned method.  
The Inter-rater Agreement function is defined in Figure 3. 

The approach closest to our new diversity metric is the “measure of difficulty” [8].  This measure looks 
at the proportion of classifiers that correctly classify an example.  One can consider plotting a histogram of 
the proportions.  The variance of this histogram is considered to be a measure of diversity.  Our approach 
measures the proportion of classifiers getting each example right.  However, rather than building a 
histogram of proportions, we examine the percent correct per example. 

We propose the percentage correct diversity measure (PCDM) algorithm shown in Figure 4.  It works by 
finding the test set examples for which between 10% and 90% of the individual classifiers in the ensemble 
are correct.  In this way, examples for which there is general consensus are not considered to be useful in 
the determination of ensemble diversity.  Rather, if an example’s classification is ambiguous, as indicated 
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   N  = Number of examples 
   L  = Number of classifiers 
   p  = Average classifier accuracy 
l(zj) = Correct classifications for classifier j 
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   L = Number of classifiers 
N00 = Classifieri is incorrect, Classifierk is incorrect 
N01 = Classifieri is incorrect, Classifierk is correct 
N10 = Classifieri is correct, Classifierk is incorrect 
N11 = Classifieri is correct, Classifierk is correct 



by having only the aforementioned percentages of classifiers vote correctly, then the classifiers, for at least 
that example, are said to be diverse.  The bounds of ten and ninety percent were chosen empirically because 
they cause the algorithm to yield a somewhat uniform distribution of PCDM values over a wide array of 
ensemble creation techniques.  Tighter bounds would place greater strictness on the examples deemed 
difficult.  The use of tighter bounds might be appropriate if comparing two extremely diverse ensembles. 

 

 

Fig. 4.  The Percentage Correct Diversity Measure algorithm 

For visualization purposes, let f(xi) be the percent of classifiers voting correctly on example  
xi  Є {x1, …, xN} where N is the number of examples.  Sorting the list of N, f(x) values and plotting them on 
a graph generates a monotonically increasing function showing the “spread” of diversity for different 
examples.  A single classifier, or a multiple classifier system where every classifier returns identical 
classifications, generates the graph shown in 5A which appears similar to a digital signal (0 or 1) with zero 
classifiers in between the 10% and 90% bounds.  Multiple classifiers outputting diverse classifications on 
the other hand cause different percentages of correct classifications to appear relative to the number of 
classifiers.  Diversity, in a sense, transforms the line from a discrete to a continuous function as in Figure 
5B.  Greater numbers of examples appearing between .1 and .9 equate to greater PCDM values. 
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Fig. 5.  After sorting the x-axis based on f(x) to create a non-decreasing graph, it is easy to visualize the number of 
examples that are diverse.  (A) shows a single classifier and (B) shows multiple classifiers having diversity 

3   Diversity Experiments 

Breiman introduced the concept of creating ensembles of trees that he called random forests [5].  He 
discussed several methods of creating trees for the forests, one of which was to use bagging and randomly 
choose an attribute for a test at each node in the decision tree.  The best split possible for that attribute 
would then be chosen.  The resultant tree is called a random tree.  An ensemble of them, 100 in his 
experiments, is a random forest.  He found that this approach was comparable in accuracy to AdaBoost [6].   

Tally = 0 
For each example 
 For each classifier 
 Classify example  
 If 10 ≤ % Classifiers Correct ≤ 90 
 Tally = Tally + 1 

Examples ofNumber 

Tally
Diversity =  



We modified C4.5 release 8 to produce random trees by randomly choosing a single attribute to test on 
at every node.  We chose to build 1000 trees in our random forest so that the resultant ensemble is almost 
certainly larger than necessary and we can better evaluate using diversity to remove trees.  Our experiments 
use a ten-fold cross validation.  We build 10,000 trees (1000 per fold) for each of twelve experimental 
datasets from the UC Irvine Repository [12].  The accuracy of unpruned and pruned ensembles (using the 
default certainty factor of 25 for pruning) is calculated for each dataset.  Table 1 shows the experimental 
results of the diversity algorithms in measuring the diversity of ensembles as well as the boost in accuracy 
when comparing average single classifier accuracy and voted accuracy.  Decreasing values of Q and Kappa 
correspond to higher diversity whereas PCDM increases as diversity increases. 

There are several instances where the accuracy of the ensemble of pruned trees is greater than that of the 
unpruned trees.  Dietterich, though he generated the trees in a different fashion, found this as well [4].  
However, in no case are the diversity scores for the pruned trees greater than the unpruned trees.  Likewise, 
in no case is the increase in accuracy of the forest of pruned trees greater than that of the unpruned trees.  
Figure 6, which compares the PCDM against other diversity measures, shows that it picks up the trend of 
increasing accuracy corresponding to increasing diversity values.  In fact, it outperforms the Q metric, 
which barely exhibits such a trend.  The Q metric is also capable of generating divide by zero errors in the 
event that any one of the classifiers in the ensemble is either 100% or 0% accurate on the test set.  In order 
to compensate for Q generating a divide by zero error, we invalidate the fold since this can occur no matter 
how diverse the two classifiers are.  In terms of running time, both PCDM and Kappa are significantly 
faster than Q, while PCDM is only marginally faster than Kappa.  For example on a 2.53 GHz Intel 
Pentium 4 it takes 0.008 seconds with PCDM, 0.018 seconds with Kappa, and 111.133 seconds with Q to 
generate diversity values from the Letter dataset. 

Table 1.   Diversity vs. accuracy results from datasets appearing in the UCI Data Repository.  Q was unable to be 
calculated for any fold in the Glass dataset due to divide by zero errors in every fold 

Dataset 
 

Pruning? 
 

Single 
Accuracy 

Forest 
Accuracy 

Accuracy 
Increase 

κ 
 

PCDM 
 

Q 
 

Letter Unpruned 78.36% 95.61% 17.25% 0.37 0.49 0.74 
Letter Pruned 79.37% 94.97% 15.60% 0.39 0.46 0.76 
Led-24 Unpruned 61.85% 74.96% 13.11% 0.41 0.68 0.71 
Waveform Unpruned 73.83% 84.88% 11.05% 0.23 0.72 0.49 
Glass Unpruned 85.95% 95.71% 9.76% 0.34 0.35 -- 
Waveform Pruned 75.36% 84.56% 9.20% 0.28 0.64 0.58 
Australian Unpruned 77.47% 86.67% 9.19% 0.32 0.58 0.65 
Cleveland Unpruned 74.90% 84.00% 9.10% 0.29 0.63 0.55 
Glass Pruned 87.20% 96.19% 8.99% 0.37 0.32 -- 
German Unpruned 66.82% 75.60% 8.78% 0.25 0.82 0.49 
Satimage Unpruned 83.65% 91.79% 8.14% 0.37 0.39 0.78 
Heart Unpruned 74.70% 81.85% 7.15% 0.31 0.60 0.56 
Cleveland Pruned 77.86% 85.00% 7.14% 0.39 0.46 0.70 
Pendigits Unpruned 92.87% 99.08% 6.21% 0.23 0.22 0.74 
Pendigits Pruned 93.20% 98.92% 5.72% 0.25 0.21 0.76 
Satimage Pruned 85.41% 91.12% 5.71% 0.46 0.30 0.86 
Segmentation Unpruned 93.38% 97.97% 4.58% 0.33 0.17 0.83 
Heart Pruned 77.10% 81.11% 4.01% 0.40 0.47 0.67 
Segmentation Pruned 93.88% 97.84% 3.96% 0.36 0.15 0.86 
Iris Unpruned 92.52% 95.33% 2.82% 0.42 0.20 0.38 
Australian Pruned 83.26% 85.22% 1.96% 0.63 0.20 0.89 
Led-24 Pruned 73.09% 74.96% 1.87% 0.74 0.24 0.96 
German Pruned 71.02% 72.30% 1.28% 0.58 0.39 0.85 
Iris Pruned 92.26% 92.67% 0.41% 0.47 0.19 0.46 
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Fig. 6.  Graphs showing the boost in accuracy vs. the diversity score for each of the three methods (A-C) 



4   Thinning 

By observing that classifiers obtain a diverse set of votes for an example, it is feasible to try to improve the 
ensemble by removing classifiers that cause misclassifications.  In the context of an ensemble of decision 
trees, this process can be likened to “thinning a forest.”  Hence, for the remainder of this paper, the process 
of removing classifiers from an ensemble will be dubbed “thinning.”  In [9] an ensemble is thinned by 
attempting to include the most diverse and accurate classifiers.  They create subsets of similar classifiers 
(those that make similar errors) and then choose the most accurate classifier from each subset.  In [10], the 
McNemar test was used to determine whether to include a decision tree in an ensemble.  This pre-thinning 
allowed an ensemble to be kept to a smaller size and is different from our “over-produce and choose” 
approach.  We introduce Accuracy in Diversity (AID) thinning, where classifiers that are most often 
incorrect on examples that are misclassified by many classifiers are removed from the ensemble.  That is, if 
a classifier incorrectly classifies an example which 99% of the others get right, removal would have no 
effect, whereas if 50% of the other classifiers get the example correct, then it may be a candidate for 
removal.  We call the dataset that is used in analyzing these percentages the thinning set, and is separate 
from the training set. 

A key step in designing the algorithm is to set proper boundaries for the accuracy percentages on 
thinning examples to use in deciding which classifiers to remove.  The greater the diversity on a thinning 
set, the more variation can be expected on a test set, and setting an upper bound that is too low can result in 
misclassifying examples previously considered to be “easy.”  In setting a lower bound, we would like to 
exclude the examples that most classifiers get wrong because almost no selection of classifiers will allow 
us to get these correct.  The lower bound for the consideration of examples should be no smaller than the 
reciprocal of the number of classes which represents, at best, random guessing.  One can imagine that mean 
individual classification accuracy also plays a part in determining the bounds, since it and diversity are so 
fundamentally related. 

The equations in Figure 7 represent the fundamental characteristics chosen to effectively set the correct 
classifier percentage boundaries for AID thinning.  The maximum value of d is 1, however in no case 
would we want to consider examples as high as 100% correct, so we set the value of α to 0.9.  The AID 
thinning algorithm is shown in Figure 8.  Note that after each tree is removed, the accuracy on the thinning 
set is recalculated. 
 

 

Fig. 7.  Boundary equations for AID thinning 

 

Fig. 8.  The AID thinning algorithm 

While number removed ≤ Maximum number to remove 
Recompute boundary points. 
Remove the classifier that has the lowest individual accuracy rate for the set of  

examples between the boundary points. 

N

d1
dµLowerBound

−
+⋅=  

d)(1µdαUpperBound −⋅+⋅=  
 

µ = Mean individual classification accuracy 
α = Approximate maximum upper bound allowed
d = Percentage correct diversity measure 
N = Number of classes



Since greater diversity typically leads to larger boosts in the accuracy of the forest, we also have created 
a thinning algorithm that works off of the aforementioned Inter-rater Agreement function called Kappa 
thinning.  In Figure 9, we compare all possible ensembles of n-1 classifiers, and eliminate the classifier 
whose removal causes the diversity to increase the most. 

 

 

Fig. 9.  The Kappa thinning algorithm 

Finally, we implement a sequential backwards selection (SBS) approach to removing classifiers.  We 
calculate the voted accuracy after generating all possible ensembles of n-1 classifiers and remove the 
classifier which causes the accuracy to increase the most.  The SBS algorithm shown in Figure 10 is similar 
to Kappa thinning except it looks at accuracy rather than diversity. 

 

 

Fig. 10.   Thinning by sequential backwards selection 

To investigate the properties of these thinning algorithms, we performed a ten-fold cross validation, 
where 10% of the overall data was removed from the training data to create a thinning set.  One thousand 
trees were built on the training data in each fold.  Classifiers were chosen for removal based on the thinning 
set until only 100 classifiers remained.  We compared various thinning methods against a randomly 
constructed ensemble of 100 classifiers, the number Brieman used in his forests [5].  Table 2 shows both 
AID and Kappa thinning were better than random construction in 21 of the 24 experiments while SBS was 
better in 20.  A thinned ensemble of trees built and pruned on the Australian and Cleveland datasets shows 
a decrease in accuracy no matter the type of thinning used.  This tends to suggest either that the diversity 
was too great for only 100 classifiers to overcome, or that thinning set selection was poor.  Indeed all of 
these thinning algorithms will learn to overfit the thinning set, negatively affecting the generalization 
potential of the ensemble.   

SBS ties twice with the other methods in accuracy but is better only once.  While Kappa thinning 
produces a larger accuracy boost over AID thinning 14 times, the majority of these cases occur at the 
bottom half of the table where the maximum increase is smaller.  Kappa thinning also has a greater running 
time than AID thinning.  The method to use thusly depends on the needed gain in accuracy and the CPU 
time available. 

Statistical significance tests will not show the small increases in accuracy to be significant; however, we 
note there is not a significant difference in accuracy even if 90% of the classifiers are removed because of 
the large variances between folds.  With up to 90% of the classifiers removed from an ensemble, ensemble 
accuracy is generally clearly lower than the best accuracy.  However, there is still significant variation 
between folds and a significance test will not show the change in accuracy to be significant. 

While number removed ≤ Maximum number to remove
For each classifier Ci of ensemble C1…CN 

Calculate κ of ensemble C1…Ci-1 , Ci+1…CN 
Remove classifier Ci causing the lowest κ value. 

While number removed ≤ Maximum number to remove 
For each classifier Ci of ensemble C1…CN 

Calculate voted accuracy of ensemble C1…Ci-1, Ci+1…CN 
Remove classifier Ci causing the highest voted accuracy 



Table 2.  Thinning methodologies are compared against randomly constructing ensembles.  Double asterisks indicate 
the highest performing AID, Kappa, or SBS thinning algorithm.  The table is sorted by the highest maximum gain 

Dataset 
 
 

Pruning? 
 
 

AID 
Acc 
 

κ Acc 
 
 

SBS 
Acc 
 

Rand 
Acc 
 

AID 
Over 
Rand 

κ Over 
Rand 
 

SBS 
Over 
Rand 

Iris Pruned 92.00% 94.67% 92.67% 88.46% 3.54% 6.20%** 4.20% 
Iris Unpruned 94.67% 94.67% 94.67% 89.21% 5.45%** 5.45%** 5.45%** 
Heart Pruned 81.11% 83.70% 81.11% 78.38% 2.73% 5.32%** 2.73% 
German Pruned 72.80% 74.30% 72.70% 69.92% 2.88% 4.38%** 2.78% 
German Unpruned 76.10% 76.00% 74.60% 74.09% 2.01%** 1.91% 0.51% 
Heart Unpruned 82.22% 82.78% 81.48% 81.32% 0.90% 1.46%** 0.16% 
Cleveland Unpruned 83.67% 83.33% 82.67% 82.47% 1.19%** 0.86% 0.19% 
Australian Unpruned 86.52% 85.07% 86.09% 85.62% 0.90%** -0.55% 0.47% 
Segmentation Pruned 97.71% 98.01% 97.71% 97.37% 0.34% 0.64%** 0.34% 
Led-24 Unpruned 75.40% 75.10% 75.10% 74.78% 0.62%** 0.32% 0.32% 
Waveform Unpruned 84.94% 84.72% 84.44% 84.38% 0.56%** 0.34% 0.06% 
Led-24 Pruned 75.08% 75.14% 74.86% 74.63% 0.45% 0.51%** 0.23% 
Glass Pruned 95.24% 96.67% 95.71% 96.17% -0.93% 0.50%** -0.45% 
Letter Pruned 94.75% 95.04% 94.85% 94.55% 0.20% 0.49%** 0.30% 
Satimage Pruned 91.34% 91.42% 91.35% 90.95% 0.39% 0.47%** 0.41% 
Letter Unpruned 95.44% 95.41% 95.36% 95.22% 0.22%** 0.19% 0.13% 
Segmentation Unpruned 97.88% 97.92% 97.97% 97.77% 0.11% 0.15% 0.20%** 
Pendigits Pruned 98.86% 98.98% 98.90% 98.79% 0.08% 0.19%** 0.11% 
Satimage Unpruned 91.73% 91.79% 91.76% 91.62% 0.11% 0.17%** 0.14% 
Pendigits Unpruned 99.03% 99.00% 98.98% 98.90% 0.13%** 0.10% 0.08% 
Waveform Pruned 84.46% 84.50% 84.30% 84.41% 0.05% 0.09%** -0.11% 
Glass Unpruned 96.19% 96.19% 96.19% 96.17% 0.02%** 0.02%** 0.02%** 
Australian Pruned 85.07% 84.49% 84.93% 85.11% -0.04%** -0.62% -0.18% 
Cleveland Pruned 83.00% 83.67% 83.00% 85.88% -2.88% -2.21%** -2.88% 

5   Discussion 

The concept of diversity is of interest because its effects can easily be seen.  However, its quantification 
and manipulation are not quite well defined.  The percentage correct diversity measure allows for some 
degree of predictability in foreseeing how much of an increase in accuracy can be expected by increasing 
the diversity of the ensemble.  Furthermore, the PCDM is more understandable and efficiently calculated 
than the Q statistic, and those are the grounds on which Kuncheva and Whitaker originally recommended 
Q.  Finally, the basis for the AID thinning algorithm, removing classifiers that incorrectly classify examples 
that generate a diverse vote, shows how the diversity concept can be used to shrink ensembles while 
maintaining or improving accuracy.  Kappa thinning shows this as well. 

Comparing the original 1000 randomly assembled classifiers to the 100 thinned classifiers, there are 
generally small losses in accuracy across the board, though these are obviously less than comparing them 
with the 100 randomly assembled classifiers.  A means of dynamically setting the stopping point of 
thinning and working backwards towards the smallest ensemble with the greatest accuracy has been 
created, and will be described and compared as part of future work. 

Finally, the algorithms presented here could be used to combine multiple different types of classifiers.  
That is, decision trees, neural networks, and so on could all contribute classification boundary suggestions, 
the least diverse of which would be thinned away. 
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